Structure Reports

Online
ISSN 1600-5368

Klaus-Dieter Warzecha,* Johann Lex and Axel G. Griesbeck

Institute of Organic Chemistry, University of Cologne, Greinstr. 4, D-50939 Cologne, Germany

Correspondence e-mail:
klaus.warzecha@uni-koeln.de

Key indicators

Single-crystal X-ray study
$T=100 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.041$
$w R$ factor $=0.095$
Data-to-parameter ratio $=12.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
N-(4-Methoxybenzyl)phthalimide: ribbons of alternating $R(16)$ and $R(22)$ ring motifs

In the title compound [systematic name: 2-(4-methoxybenz-yl)isoindoline-1,3-dione], $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$, pairwise intermolecular $\mathrm{C}_{\text {aryl }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ bonds generate $R_{2}^{2}(16)$ motifs. Additionally, $\pi-\pi$ stacking of phthalimides in head-to-tail dimers, together with $\mathrm{C}_{\text {aryl }}-\mathrm{H} \cdots \mathrm{O}-\mathrm{C}_{\text {aryl }}$ interactions, in which the O atom of an arylmethyl ether serves as a hydrogen bond acceptor, connect these rings into infinite ribbons via $R(22)$ motifs.

Comment

The title compound, (I), was prepared in the context of a timeresolved spectroscopic study on the the mechanism of photoinduced electron transfer reactions between N-substituted phthalimides and phenylacetates (Warzecha et al., 2006).

(I)

The compound (Fig. 1) contains two planar subunits, viz. the phthalimide chromophore and the 4-methoxyphenyl unit. The two units are linked by the methylene group C 9 .

The $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$ bond angle is in good agreement with those in the parent N-benzylphthalimide (II) (Warzecha et al., 2006a; Lü et al., 2006), the regioisomeric N-(2-methoxybenzyl)phthalimide (Warzecha et al., 2006b) and the 4-methylbenzyl derivative (Chen et al., 2006). The methyl group C16 is coplanar with the benzene ring (Table 1).

Compared with N-(4-methylbenzyl)phthalimide, which shows the roof-shaped conformation of (II), the introduction of a methoxy group para to the $s p^{3}$ linkage results in a significantly different conformation for the title compound. In (I), the torsion angles $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10$ and $\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 9-$ C 10 differ significantly from 90° and the $\mathrm{C} 9-\mathrm{C} 10$ bond is no longer orthogonal to the phthalimide ring plane. In addition, torsion angles $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 11$ and $\mathrm{N} 1-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 15$, involving the linkage of the imide N atom to the benzene ring, while virtually identical in the parent molecule, exhibit significantly different values in (I).

The packing of (I) features two different types of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ bonds (Desiraju, 1991; Steiner, 2002). On the one hand, two molecules related by symmetry code ($2-x,-y, 1-z$) form an $R_{2}^{2}(16)$ motif (Etter, 1990; Etter et al., 1990) by pairwise intermolecular $\mathrm{C}_{\text {aryl }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bonding between O 1 and C 12 , the C atom ortho to the methoxy group (Table 2).

Received 18 October 2006
Accepted 2 November 2006

Figure 1
The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level; H atoms are shown as circles of arbitrary size.

Figure 2
A view of the unit-cell contents of (I); pairwise $\mathrm{C}_{\text {aryl }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ bonds generate $R_{2}^{2}(16)$ motifs. Dashed lines indicate hydrogen bonds.

Each molecule in such a motif also participates in $\pi-\pi$ stacking where two phthalimide groups related by an inversion centre are oriented in head-to-tail fashion with an interplanar distance of 3.487 (1) A. This $\pi-\pi$ interaction can also be described in terms of two centroid-to-centroid distances, where $C g 1$ is the centroid of the five-membered imide and $C g 2$ is the centroid of the six-membered ring of the phthalimide

Figure 3
In the packing of (I), the combination of $\mathrm{C}_{\text {aryl }}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ bonds, $\pi-\pi-$ stacking and $\mathrm{C}_{\text {aryl }}-\mathrm{H} \cdots \mathrm{O}-\mathrm{C}_{\text {aryl }}$ bonds features ribbons of alternating $R_{2}^{2}(16)$ and $R_{4}^{4}(22)$ motifs. Dashed lines indicate hydrogen bonds.
$[\operatorname{Cg} 1 \cdots \operatorname{Cg} 1(1-x, 1-y,-z)=3.615(1) \AA$ and $C g 1 \cdots C g 2(1-x, 1-y,-z)=3.682(1) \AA]$.

Each molecule in a $\pi-\pi$-dimer also features a second, weaker, set of $\mathrm{C}_{\text {aryl }}-\mathrm{H} \cdots \mathrm{O}-\mathrm{C}_{\text {aryl }}$ interactions to a neighbouring molecule (Table 2). In the crystal structure, the interplay of $\pi-\pi$ stacking and two types of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}-\mathrm{C}$ bonds results in infinite ribbons of alternating $R_{2}^{2}(16)$ and $R_{4}^{4}(22)$ motifs running along the crystallographic b axis.

Experimental

Phthalic anhydride (Acros) and 4-methoxybenzylamine (Acros) were used as received. A mixture of well ground phthalic anhydride ($5.92 \mathrm{~g}, 40 \mathrm{mmol}$) and 4-methoxybenzylamine ($5.48 \mathrm{~g}, 40 \mathrm{mmol}$) was fused in an open beaker by heating in a domestic microwave oven (800 W) in four cycles of 1 min heating and subsequent cooling. Recrystallization of the resulting crude material from ethanol furnished colourless prisms of the title compound $(9.62 \mathrm{~g}, 36 \mathrm{mmol}, 90 \%$, m. p. 404 K) suitable for X-ray diffraction.

Crystal data

$\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{NO}_{3}$
$M_{r}=267.27$
Monoclinic, $P 2_{1} / c$
$a=10.1225$ (4) \AA
$b=15.8036$ (6) \AA
$c=8.2249$ (3) A
$\beta=99.562(1)^{\circ}$
$V=1297.47(9) \AA^{3}$

$$
\begin{aligned}
& Z=4 \\
& D_{x}=1.368 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.10 \mathrm{~mm}^{-1} \\
& T=100(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.48 \times 0.32 \times 0.25 \mathrm{~mm}
\end{aligned}
$$

Data collection

Nonius KappaCCD diffractometer φ and ω scans
Absorption correction: none 6586 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.095$
$S=0.97$
2826 reflections
234 parameters
All H-atom parameters refined

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0439 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.002 \\
& \Delta \rho_{\max }=0.21 \mathrm{e}^{2} \AA^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97
Extinction coefficient: 0.015 (2)

Table 1
Selected bond and torsion angles $\left({ }^{\circ}\right)$.

N1-C9-C10	$113.25(12)$	C1-N1-C9	$122.52(13)$
C2-N1-C9	$125.32(12)$	C13-O3-C16	$117.65(14)$
C10-C9-N1-C1	$73.01(18)$	N1-C9-C10-C15	$28.9(2)$
C10-C9-N1-C2	$-102.95(18)$	C12-C13-O3-C16	$179.67(16)$
N1-C9-C10-C11	$-153.41(14)$	$\mathrm{C} 14-\mathrm{C} 13-\mathrm{O} 3-\mathrm{C} 16$	$0.9(2)$

Table 2
Hydrogen-bond geometry ($\mathrm{A},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C5-H5 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.99(2)$	$2.48(2)$	$3.231(2)$	$133(1)$
C12-H12 $^{\mathrm{i}} \mathrm{O}^{\mathrm{ii}}$	$0.99(2)$	$2.51(2)$	$3.360(2)$	$145(1)$

Symmetry codes: (i) $x-1, y, z-1$; (ii) $-x+2,-y,-z+1$.

All H atoms were refined isotropically [range of refined $\mathrm{C}-\mathrm{H}$ distances $=0.93(2)-1.06(2) \AA]$.

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski \& Minor, 1997); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SCHAKAL99 (Keller, 1999); software used to prepare material for publication: SHELXL97, PLATON (Spek, 2003) and enCIFer (Allen et al., 2004).

We thank the Deutsche Forschungsgemeinschaft (DFG, Germany) and the Centre National de la Recherche Scientifique (CNRS, France) for their generous financial support.

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Chen, P., Zhang, L. \& Li, D. (2006). Acta Cryst. E62, o4188-o4189.
Desiraju, G. R. (1991). Acc. Chem. Res. 24, 290-296.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Hooft, R. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands.
Keller, E. (1999). SCHAKAL99. University of Freiburg, Germany.
Lü, Y.-W., Wang, B.-H., Cai, G.-D., Li, Z.-H. \& Wang, P. (2006). Acta Cryst. E62, o2965-o2966.
Otwinowski, Z. \& Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr \& R. M. Sweet, pp. 307-326. New York: Academic Press.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.
Warzecha, K.-D., Görner, H. \& Griesbeck, A. G. (2006). J. Phys. Chem. A, 110, 3356-3363.
Warzecha, K.-D., Lex, J. \& Griesbeck, A. G. (2006a). Acta Cryst. E62, o2367o2368.
Warzecha, K.-D., Lex, J. \& Griesbeck, A. G. (2006b). Acta Cryst. E62, o527105273.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

